Assignment 10

Hand in no. 1, 2, 4 and 7 by Nov 28.

- 1. Determine which of the following sets are dense, open dense, nowhere dense, of first category and residual in \mathbb{R} (you may draw a table):
 - (a) $A = \{n/2^m : n, m \in \mathbb{Z}\},\$
 - (b) B, all irrational numbers,
 - (c) $C = \{0, 1, 1/2, 1/3, \dots\}$,
 - (d) $D = \{1, 1/2, 1/3, \dots\}$,
 - (e) $E = \{x: x^2 + 3x 6 = 0\}$,
 - (f) $F = \bigcup_k (k, k+1), k \in \mathbb{N}$,
- 2. Determine which of the following sets are dense, open dense, nowhere dense, of first category and residual in C[0, 1] (you may draw a table):
 - (a) \mathcal{A} , all polynomials whose coefficients are rational numbers,
 - (b) \mathcal{B} , all polynomials,
 - (c) $C = \{f : \int_0^1 f(x) dx \neq 0\}$,
 - (d) $\mathcal{D} = \{ f : f(1/2) = 1 \}$.
- 3. Use Baire Category Theorem to show that transcendental numbers are dense in the set of real numbers.
- 4. A point p in a metric space X is called an *isolated point* if there is an open set G such that $G \cap X = \{p\}$, that is, $\{p\}$ is open. A set E in X is a *perfect set* if it is closed and contains no isolated points.
 - (a) For each x in the perfect set E, there exists a sequence in E consisting of infinitely many distinct points converging to x.
 - (b) Every perfect set is uncountable in a complete metric space.
- 5. Let f be a real-valued function on \mathbb{R} . Define the oscillation of f at x to be $\omega_f(x) = \lim_{\delta \to 0^+} \omega_f(x, \delta)$ where

$$\omega_f(x,\delta) = \sup\{|f(y) - f(z)| : y, z \in (x - \delta, x + \delta)\}.$$

- (a) The set $D = \{x : \omega_f(x) \ge \rho\}$ is closed for all $\rho > 0$.
- (b) Show that the set of discontinuous point of f is given by $\bigcup_n D_n$ where $D_n = \{x : \omega_f(x) \ge 1/n\}.$
- (c) Show that we cannot find a function which is discontinuous exactly at all irrational numbers.
- 6. Let $\|\cdot\|$ be a norm on \mathbb{R}^n .
 - (a) Show that $||x|| \leq C ||x||_2$ for some C where $||\cdot||_2$ is the Euclidean metric.
 - (b) Deduce from (a) that the function $x \mapsto ||x||$ is continuous with respect to the Euclidean metric.

- (c) Show that the inequality $||x||_2 \leq C' ||x||$ for some C' also holds. Hint: Observe that $x \mapsto ||x||$ is positive on the unit sphere $\{x \in \mathbb{R}^n : ||x||_2 = 1\}$ which is compact (that is, closed and bounded).
- (d) Establish the theorem asserting any two norms in a finite dimensional vector space are equivalent.
- 7. Let P be the vector space consisting of all polynomials. Show that we cannot find a norm on P so that it becomes a Banach space.
- 8. Let \mathcal{F} be a subset of C(X) where X is a complete metric space. Suppose that for each $x \in X$, there exists a constant M depending on x such that $|f(x)| \leq M$, $\forall f \in \mathcal{F}$. Prove that there exists an open set G in X and a constant C such that $\sup_{x \in G} |f(x)| \leq C$ for all $f \in \mathcal{F}$. Suggestion: Consider the decomposition of X into the sets $X_n = \{x \in X : |f(x)| \leq n, \forall f \in \mathcal{F}\}.$